3.25.13 \(\int \frac {(5-x) \sqrt {2+5 x+3 x^2}}{(3+2 x)^3} \, dx\) [2413]

Optimal. Leaf size=107 \[ \frac {(121+124 x) \sqrt {2+5 x+3 x^2}}{40 (3+2 x)^2}-\frac {1}{8} \sqrt {3} \tanh ^{-1}\left (\frac {5+6 x}{2 \sqrt {3} \sqrt {2+5 x+3 x^2}}\right )+\frac {27 \tanh ^{-1}\left (\frac {7+8 x}{2 \sqrt {5} \sqrt {2+5 x+3 x^2}}\right )}{80 \sqrt {5}} \]

[Out]

-1/8*arctanh(1/6*(5+6*x)*3^(1/2)/(3*x^2+5*x+2)^(1/2))*3^(1/2)+27/400*arctanh(1/10*(7+8*x)*5^(1/2)/(3*x^2+5*x+2
)^(1/2))*5^(1/2)+1/40*(121+124*x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^2

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {824, 857, 635, 212, 738} \begin {gather*} \frac {\sqrt {3 x^2+5 x+2} (124 x+121)}{40 (2 x+3)^2}-\frac {1}{8} \sqrt {3} \tanh ^{-1}\left (\frac {6 x+5}{2 \sqrt {3} \sqrt {3 x^2+5 x+2}}\right )+\frac {27 \tanh ^{-1}\left (\frac {8 x+7}{2 \sqrt {5} \sqrt {3 x^2+5 x+2}}\right )}{80 \sqrt {5}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((5 - x)*Sqrt[2 + 5*x + 3*x^2])/(3 + 2*x)^3,x]

[Out]

((121 + 124*x)*Sqrt[2 + 5*x + 3*x^2])/(40*(3 + 2*x)^2) - (Sqrt[3]*ArcTanh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x +
3*x^2])])/8 + (27*ArcTanh[(7 + 8*x)/(2*Sqrt[5]*Sqrt[2 + 5*x + 3*x^2])])/(80*Sqrt[5])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 824

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m + 1))*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)))*((d*g - e*f*(m + 2)
)*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d -
b*e)*(e*f - d*g))*x), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*
x + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m +
1) - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m +
 1) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*
a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3,
0]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(5-x) \sqrt {2+5 x+3 x^2}}{(3+2 x)^3} \, dx &=\frac {(121+124 x) \sqrt {2+5 x+3 x^2}}{40 (3+2 x)^2}-\frac {1}{80} \int \frac {63+60 x}{(3+2 x) \sqrt {2+5 x+3 x^2}} \, dx\\ &=\frac {(121+124 x) \sqrt {2+5 x+3 x^2}}{40 (3+2 x)^2}+\frac {27}{80} \int \frac {1}{(3+2 x) \sqrt {2+5 x+3 x^2}} \, dx-\frac {3}{8} \int \frac {1}{\sqrt {2+5 x+3 x^2}} \, dx\\ &=\frac {(121+124 x) \sqrt {2+5 x+3 x^2}}{40 (3+2 x)^2}-\frac {27}{40} \text {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,\frac {-7-8 x}{\sqrt {2+5 x+3 x^2}}\right )-\frac {3}{4} \text {Subst}\left (\int \frac {1}{12-x^2} \, dx,x,\frac {5+6 x}{\sqrt {2+5 x+3 x^2}}\right )\\ &=\frac {(121+124 x) \sqrt {2+5 x+3 x^2}}{40 (3+2 x)^2}-\frac {1}{8} \sqrt {3} \tanh ^{-1}\left (\frac {5+6 x}{2 \sqrt {3} \sqrt {2+5 x+3 x^2}}\right )+\frac {27 \tanh ^{-1}\left (\frac {7+8 x}{2 \sqrt {5} \sqrt {2+5 x+3 x^2}}\right )}{80 \sqrt {5}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.29, size = 93, normalized size = 0.87 \begin {gather*} \frac {1}{200} \left (\frac {5 (121+124 x) \sqrt {2+5 x+3 x^2}}{(3+2 x)^2}+27 \sqrt {5} \tanh ^{-1}\left (\frac {\sqrt {\frac {2}{5}+x+\frac {3 x^2}{5}}}{1+x}\right )-50 \sqrt {3} \tanh ^{-1}\left (\frac {\sqrt {\frac {2}{3}+\frac {5 x}{3}+x^2}}{1+x}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*Sqrt[2 + 5*x + 3*x^2])/(3 + 2*x)^3,x]

[Out]

((5*(121 + 124*x)*Sqrt[2 + 5*x + 3*x^2])/(3 + 2*x)^2 + 27*Sqrt[5]*ArcTanh[Sqrt[2/5 + x + (3*x^2)/5]/(1 + x)] -
 50*Sqrt[3]*ArcTanh[Sqrt[2/3 + (5*x)/3 + x^2]/(1 + x)])/200

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 142, normalized size = 1.33

method result size
risch \(\frac {372 x^{3}+983 x^{2}+853 x +242}{40 \left (3+2 x \right )^{2} \sqrt {3 x^{2}+5 x +2}}-\frac {\ln \left (\frac {\left (\frac {5}{2}+3 x \right ) \sqrt {3}}{3}+\sqrt {3 x^{2}+5 x +2}\right ) \sqrt {3}}{8}-\frac {27 \sqrt {5}\, \arctanh \left (\frac {2 \left (-\frac {7}{2}-4 x \right ) \sqrt {5}}{5 \sqrt {12 \left (x +\frac {3}{2}\right )^{2}-16 x -19}}\right )}{400}\) \(97\)
trager \(\frac {\left (121+124 x \right ) \sqrt {3 x^{2}+5 x +2}}{40 \left (3+2 x \right )^{2}}+\frac {27 \RootOf \left (\textit {\_Z}^{2}-5\right ) \ln \left (\frac {8 \RootOf \left (\textit {\_Z}^{2}-5\right ) x +7 \RootOf \left (\textit {\_Z}^{2}-5\right )+10 \sqrt {3 x^{2}+5 x +2}}{3+2 x}\right )}{400}-\frac {\RootOf \left (\textit {\_Z}^{2}-3\right ) \ln \left (6 \RootOf \left (\textit {\_Z}^{2}-3\right ) x +5 \RootOf \left (\textit {\_Z}^{2}-3\right )+6 \sqrt {3 x^{2}+5 x +2}\right )}{8}\) \(118\)
default \(-\frac {13 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {3}{2}}}{40 \left (x +\frac {3}{2}\right )^{2}}-\frac {21 \left (3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}\right )^{\frac {3}{2}}}{50 \left (x +\frac {3}{2}\right )}+\frac {27 \sqrt {12 \left (x +\frac {3}{2}\right )^{2}-16 x -19}}{400}-\frac {27 \sqrt {5}\, \arctanh \left (\frac {2 \left (-\frac {7}{2}-4 x \right ) \sqrt {5}}{5 \sqrt {12 \left (x +\frac {3}{2}\right )^{2}-16 x -19}}\right )}{400}+\frac {21 \left (5+6 x \right ) \sqrt {3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}}}{100}-\frac {\ln \left (\frac {\left (\frac {5}{2}+3 x \right ) \sqrt {3}}{3}+\sqrt {3 \left (x +\frac {3}{2}\right )^{2}-4 x -\frac {19}{4}}\right ) \sqrt {3}}{8}\) \(142\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^3,x,method=_RETURNVERBOSE)

[Out]

-13/40/(x+3/2)^2*(3*(x+3/2)^2-4*x-19/4)^(3/2)-21/50/(x+3/2)*(3*(x+3/2)^2-4*x-19/4)^(3/2)+27/400*(12*(x+3/2)^2-
16*x-19)^(1/2)-27/400*5^(1/2)*arctanh(2/5*(-7/2-4*x)*5^(1/2)/(12*(x+3/2)^2-16*x-19)^(1/2))+21/100*(5+6*x)*(3*(
x+3/2)^2-4*x-19/4)^(1/2)-1/8*ln(1/3*(5/2+3*x)*3^(1/2)+(3*(x+3/2)^2-4*x-19/4)^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 131, normalized size = 1.22 \begin {gather*} -\frac {1}{8} \, \sqrt {3} \log \left (\sqrt {3} \sqrt {3 \, x^{2} + 5 \, x + 2} + 3 \, x + \frac {5}{2}\right ) - \frac {27}{400} \, \sqrt {5} \log \left (\frac {\sqrt {5} \sqrt {3 \, x^{2} + 5 \, x + 2}}{{\left | 2 \, x + 3 \right |}} + \frac {5}{2 \, {\left | 2 \, x + 3 \right |}} - 2\right ) + \frac {39}{40} \, \sqrt {3 \, x^{2} + 5 \, x + 2} - \frac {13 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {3}{2}}}{10 \, {\left (4 \, x^{2} + 12 \, x + 9\right )}} - \frac {21 \, \sqrt {3 \, x^{2} + 5 \, x + 2}}{20 \, {\left (2 \, x + 3\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^3,x, algorithm="maxima")

[Out]

-1/8*sqrt(3)*log(sqrt(3)*sqrt(3*x^2 + 5*x + 2) + 3*x + 5/2) - 27/400*sqrt(5)*log(sqrt(5)*sqrt(3*x^2 + 5*x + 2)
/abs(2*x + 3) + 5/2/abs(2*x + 3) - 2) + 39/40*sqrt(3*x^2 + 5*x + 2) - 13/10*(3*x^2 + 5*x + 2)^(3/2)/(4*x^2 + 1
2*x + 9) - 21/20*sqrt(3*x^2 + 5*x + 2)/(2*x + 3)

________________________________________________________________________________________

Fricas [A]
time = 3.04, size = 143, normalized size = 1.34 \begin {gather*} \frac {50 \, \sqrt {3} {\left (4 \, x^{2} + 12 \, x + 9\right )} \log \left (-4 \, \sqrt {3} \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (6 \, x + 5\right )} + 72 \, x^{2} + 120 \, x + 49\right ) + 27 \, \sqrt {5} {\left (4 \, x^{2} + 12 \, x + 9\right )} \log \left (\frac {4 \, \sqrt {5} \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (8 \, x + 7\right )} + 124 \, x^{2} + 212 \, x + 89}{4 \, x^{2} + 12 \, x + 9}\right ) + 20 \, \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (124 \, x + 121\right )}}{800 \, {\left (4 \, x^{2} + 12 \, x + 9\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^3,x, algorithm="fricas")

[Out]

1/800*(50*sqrt(3)*(4*x^2 + 12*x + 9)*log(-4*sqrt(3)*sqrt(3*x^2 + 5*x + 2)*(6*x + 5) + 72*x^2 + 120*x + 49) + 2
7*sqrt(5)*(4*x^2 + 12*x + 9)*log((4*sqrt(5)*sqrt(3*x^2 + 5*x + 2)*(8*x + 7) + 124*x^2 + 212*x + 89)/(4*x^2 + 1
2*x + 9)) + 20*sqrt(3*x^2 + 5*x + 2)*(124*x + 121))/(4*x^2 + 12*x + 9)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {5 \sqrt {3 x^{2} + 5 x + 2}}{8 x^{3} + 36 x^{2} + 54 x + 27}\right )\, dx - \int \frac {x \sqrt {3 x^{2} + 5 x + 2}}{8 x^{3} + 36 x^{2} + 54 x + 27}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x**2+5*x+2)**(1/2)/(3+2*x)**3,x)

[Out]

-Integral(-5*sqrt(3*x**2 + 5*x + 2)/(8*x**3 + 36*x**2 + 54*x + 27), x) - Integral(x*sqrt(3*x**2 + 5*x + 2)/(8*
x**3 + 36*x**2 + 54*x + 27), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 240 vs. \(2 (83) = 166\).
time = 1.49, size = 240, normalized size = 2.24 \begin {gather*} \frac {27}{400} \, \sqrt {5} \log \left (\frac {{\left | -4 \, \sqrt {3} x - 2 \, \sqrt {5} - 6 \, \sqrt {3} + 4 \, \sqrt {3 \, x^{2} + 5 \, x + 2} \right |}}{{\left | -4 \, \sqrt {3} x + 2 \, \sqrt {5} - 6 \, \sqrt {3} + 4 \, \sqrt {3 \, x^{2} + 5 \, x + 2} \right |}}\right ) + \frac {1}{8} \, \sqrt {3} \log \left ({\left | -2 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )} - 5 \right |}\right ) + \frac {886 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{3} + 2897 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{2} + 9039 \, \sqrt {3} x + 3037 \, \sqrt {3} - 9039 \, \sqrt {3 \, x^{2} + 5 \, x + 2}}{40 \, {\left (2 \, {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )}^{2} + 6 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )} + 11\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^3,x, algorithm="giac")

[Out]

27/400*sqrt(5)*log(abs(-4*sqrt(3)*x - 2*sqrt(5) - 6*sqrt(3) + 4*sqrt(3*x^2 + 5*x + 2))/abs(-4*sqrt(3)*x + 2*sq
rt(5) - 6*sqrt(3) + 4*sqrt(3*x^2 + 5*x + 2))) + 1/8*sqrt(3)*log(abs(-2*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x +
 2)) - 5)) + 1/40*(886*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^3 + 2897*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2)
)^2 + 9039*sqrt(3)*x + 3037*sqrt(3) - 9039*sqrt(3*x^2 + 5*x + 2))/(2*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^2 + 6
*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2)) + 11)^2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {\left (x-5\right )\,\sqrt {3\,x^2+5\,x+2}}{{\left (2\,x+3\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((x - 5)*(5*x + 3*x^2 + 2)^(1/2))/(2*x + 3)^3,x)

[Out]

-int(((x - 5)*(5*x + 3*x^2 + 2)^(1/2))/(2*x + 3)^3, x)

________________________________________________________________________________________